1. 16 Mar, 2017 3 commits
  2. 14 Mar, 2017 2 commits
  3. 13 Mar, 2017 3 commits
  4. 10 Mar, 2017 4 commits
  5. 09 Mar, 2017 4 commits
  6. 08 Mar, 2017 3 commits
  7. 07 Mar, 2017 1 commit
  8. 06 Mar, 2017 3 commits
  9. 03 Mar, 2017 3 commits
  10. 28 Feb, 2017 3 commits
  11. 27 Feb, 2017 1 commit
  12. 24 Feb, 2017 2 commits
    • Henry Weller's avatar
      rhoSimpleFoam: Added support for transonic flow of liquids and real gases · 7d6845de
      Henry Weller authored
      Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
      fvSolution) are now supported for both subsonic and transonic flow of all
      fluid types.
      7d6845de
    • Henry Weller's avatar
      rhoSimpleFoam: added support for compressible liquid flows · a1c8cde3
      Henry Weller authored
      rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
      either a psiThermo or rhoThermo according to the 'type' specification in
      thermophysicalProperties, e.g.
      
      thermoType
      {
          type            hePsiThermo;
          mixture         pureMixture;
          transport       sutherland;
          thermo          janaf;
          equationOfState perfectGas;
          specie          specie;
          energy          sensibleInternalEnergy;
      }
      
      instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas
      
      thermoType
      {
          type            heRhoThermo;
          mixture         pureMixture;
          properties      liquid;
          energy          sensibleInternalEnergy;
      }
      
      mixture
      {
          H2O;
      }
      
      instantiates a rhoThermo for water, see new tutorial
      compressible/rhoSimpleFoam/squareBendLiq.
      
      In order to support complex equations of state the pressure can no longer be
      unlimited and rhoSimpleFoam now limits the pressure rather than the density to
      handle start-up more robustly.
      
      For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
      sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
      is better to set either 'pMax' and 'pMin' directly or use the more convenient
      'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
      the fixed boundary pressure or reference pressure e.g.
      
      SIMPLE
      {
          nNonOrthogonalCorrectors 0;
      
          pMinFactor      0.1;
          pMaxFactor      1.5;
      
          transonic       yes;
          consistent      yes;
      
          residualControl
          {
              p               1e-3;
              U               1e-4;
              e               1e-3;
              "(k|epsilon|omega)" 1e-3;
          }
      }
      a1c8cde3
  13. 23 Feb, 2017 1 commit
  14. 22 Feb, 2017 3 commits
  15. 21 Feb, 2017 1 commit
  16. 20 Feb, 2017 2 commits
  17. 19 Feb, 2017 1 commit
    • Henry Weller's avatar
      liquidThermo: rhoThermo instantiated on liquidProperties · f6dacfb4
      Henry Weller authored
      This allows single, multi-phase and VoF compressible simulations to be performed
      with the accurate thermophysical property functions for liquids provided by the
      liquidProperty classes.  e.g. in the
      multiphase/compressibleInterFoam/laminar/depthCharge2D tutorial water can now be
      specified by
      
      thermoType
      {
          type            heRhoThermo;
          mixture         pureMixture;
          properties      liquid;
          energy          sensibleInternalEnergy;
      }
      
      mixture
      {
          H2O;
      }
      
      as an alternative to the previous less accurate representation defined by
      
      thermoType
      {
          type            heRhoThermo;
          mixture         pureMixture;
          transport       const;
          thermo          hConst;
          equationOfState perfectFluid;
          specie          specie;
          energy          sensibleInternalEnergy;
      }
      
      mixture
      {
          specie
          {
              molWeight   18.0;
          }
          equationOfState
          {
              R           3000;
              rho0        1027;
          }
          thermodynamics
          {
              Cp          4195;
              Hf          0;
          }
          transport
          {
              mu          3.645e-4;
              Pr          2.289;
          }
      }
      
      However the increase in accuracy of the new simpler and more convenient
      specification and representation comes at a cost: the NSRDS functions used by
      the liquidProperties classes are relatively expensive to evaluate and the
      depthCharge2D case takes ~14% longer to run.
      f6dacfb4