Skip to content
Snippets Groups Projects
  1. Apr 28, 2016
    • Henry Weller's avatar
      fireFoam: New additional controls switch "solvePyrolysisRegion" · 62c62abd
      Henry Weller authored
      provides optional control for solving the pyrolysis region.
      
      Patch contributed by Karl Meredith, FMGlobal.
      62c62abd
    • Henry Weller's avatar
      GeometricField::GeometricBoundaryField -> GeometricField::Boundary · ea5401c7
      Henry Weller authored
      When the GeometricBoundaryField template class was originally written it
      was a separate class in the Foam namespace rather than a sub-class of
      GeometricField as it is now.  Without loss of clarity and simplifying
      code which access the boundary field of GeometricFields it is better
      that GeometricBoundaryField be renamed Boundary for consistency with the
      new naming convention for the type of the dimensioned internal field:
      Internal, see commit 4a57b9be
      
      This is a very simple text substitution change which can be applied to
      any code which compiles with the OpenFOAM-dev libraries.
      ea5401c7
  2. Apr 27, 2016
    • Henry Weller's avatar
      GeometricField: Rationalized and simplified access to the dimensioned internal field · 4a57b9be
      Henry Weller authored
      Given that the type of the dimensioned internal field is encapsulated in
      the GeometricField class the name need not include "Field"; the type
      name is "Internal" so
      
      volScalarField::DimensionedInternalField -> volScalarField::Internal
      
      In addition to the ".dimensionedInternalField()" access function the
      simpler "()" de-reference operator is also provided to greatly simplify
      FV equation source term expressions which need not evaluate boundary
      conditions.  To demonstrate this kEpsilon.C has been updated to use
      dimensioned internal field expressions in the k and epsilon equation
      source terms.
      4a57b9be
  3. Apr 26, 2016
  4. Apr 25, 2016
    • Henry Weller's avatar
      Completed boundaryField() -> boundaryFieldRef() · 22f4ad32
      Henry Weller authored
      Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1938
      
      Because C++ does not support overloading based on the return-type there
      is a problem defining both const and non-const member functions which
      are resolved based on the const-ness of the object for which they are
      called rather than the intent of the programmer declared via the
      const-ness of the returned type.  The issue for the "boundaryField()"
      member function is that the non-const version increments the
      event-counter and checks the state of the stored old-time fields in case
      the returned value is altered whereas the const version has no
      side-effects and simply returns the reference.  If the the non-const
      function is called within the patch-loop the event-counter may overflow.
      To resolve this it in necessary to avoid calling the non-const form of
      "boundaryField()" if the results is not altered and cache the reference
      outside the patch-loop when mutation of the patch fields is needed.
      
      The most straight forward way of resolving this problem is to name the
      const and non-const forms of the member functions differently e.g. the
      non-const form could be named:
      
          mutableBoundaryField()
          mutBoundaryField()
          nonConstBoundaryField()
          boundaryFieldRef()
      
      Given that in C++ a reference is non-const unless specified as const:
      "T&" vs "const T&" the logical convention would be
      
          boundaryFieldRef()
          boundaryFieldConstRef()
      
      and given that the const form which is more commonly used is it could
      simply be named "boundaryField()" then the logical convention is
      
          GeometricBoundaryField& boundaryFieldRef();
      
          inline const GeometricBoundaryField& boundaryField() const;
      
      This is also consistent with the new "tmp" class for which non-const
      access to the stored object is obtained using the ".ref()" member function.
      
      This new convention for non-const access to the components of
      GeometricField will be applied to "dimensionedInternalField()" and "internalField()" in the
      future, i.e. "dimensionedInternalFieldRef()" and "internalFieldRef()".
      22f4ad32
    • Henry Weller's avatar
      43beb060
  5. Apr 23, 2016
    • Henry Weller's avatar
      fireFoam: Added optional hydrostatic initialization of the pressure and density · 673e0d17
      Henry Weller authored
      Also added the new prghTotalHydrostaticPressure p_rgh BC which uses the
      hydrostatic pressure field as the reference state for the far-field
      which provides much more accurate entrainment is large open domains
      typical of many fire simulations.
      
      The hydrostatic field solution is controlled by the optional entries in
      the fvSolution.PIMPLE dictionary, e.g.
      
          hydrostaticInitialization yes;
          nHydrostaticCorrectors 5;
      
      and the solver must also be specified for the hydrostatic p_rgh field
      ph_rgh e.g.
      
          ph_rgh
          {
              $p_rgh;
          }
      
      Suitable boundary conditions for ph_rgh cannot always be derived from
      those for p_rgh and so the ph_rgh is read to provide them.
      
      To avoid accuracy issues with IO, restart and post-processing the p_rgh
      and ph_rgh the option to specify a suitable reference pressure is
      provided via the optional pRef file in the constant directory, e.g.
      
          dimensions      [1 -1 -2 0 0 0 0];
          value           101325;
      
      which is used in the relationship between p_rgh and p:
      
          p = p_rgh + rho*gh + pRef;
      
      Note that if pRef is specified all pressure BC specifications in the
      p_rgh and ph_rgh files are relative to the reference to avoid round-off
      errors.
      
      For examples of suitable BCs for p_rgh and ph_rgh for a range of
      fireFoam cases please study the tutorials in
      tutorials/combustion/fireFoam/les which have all been updated.
      
      Henry G. Weller
      CFD Direct Ltd.
      673e0d17
  6. Apr 16, 2016
  7. Apr 06, 2016
  8. Mar 22, 2016
  9. Feb 26, 2016
    • Henry Weller's avatar
      OpenFOAM: Updated all libraries, solvers and utilities to use the new const-safe tmp · cd852be3
      Henry Weller authored
      The deprecated non-const tmp functionality is now on the compiler switch
      NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
      in the Make/options file.  However, it is recommended to upgrade all
      code to the new safer tmp by using the '.ref()' member function rather
      than the non-const '()' dereference operator when non-const access to
      the temporary object is required.
      
      Please report any problems on Mantis.
      
      Henry G. Weller
      CFD Direct.
      cd852be3
  10. Feb 20, 2016
    • Henry Weller's avatar
      Boundary conditions: Added extrapolatedCalculatedFvPatchField · 99a10ece
      Henry Weller authored
      To be used instead of zeroGradientFvPatchField for temporary fields for
      which zero-gradient extrapolation is use to evaluate the boundary field
      but avoiding fields derived from temporary field using field algebra
      inheriting the zeroGradient boundary condition by the reuse of the
      temporary field storage.
      
      zeroGradientFvPatchField should not be used as the default patch field
      for any temporary fields and should be avoided for non-temporary fields
      except where it is clearly appropriate;
      extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
      generally more suitable defaults depending on the manner in which the
      boundary values are specified or evaluated.
      
      The entire OpenFOAM-dev code-base has been updated following the above
      recommendations.
      
      Henry G. Weller
      CFD Direct
      99a10ece
  11. Feb 18, 2016
  12. Feb 13, 2016
    • Henry Weller's avatar
      Solvers: Added support for extrapolated pressure boundary conditions · fc2ce737
      Henry Weller authored
      The boundary conditions of HbyA are now constrained by the new "constrainHbyA"
      function which applies the velocity boundary values for patches for which the
      velocity cannot be modified by assignment and pressure extrapolation is
      not specified via the new
      "fixedFluxExtrapolatedPressureFvPatchScalarField".
      
      The new function "constrainPressure" sets the pressure gradient
      appropriately for "fixedFluxPressureFvPatchScalarField" and
      "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary conditions to
      ensure the evaluated flux corresponds to the known velocity values at
      the boundary.
      
      The "fixedFluxPressureFvPatchScalarField" boundary condition operates
      exactly as before, ensuring the correct flux at fixed-flux boundaries by
      compensating for the body forces (gravity in particular) with the
      pressure gradient.
      
      The new "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary
      condition may be used for cases with or without body-forces to set the
      pressure gradient to compensate not only for the body-force but also the
      extrapolated "HbyA" which provides a second-order boundary condition for
      pressure.  This is useful for a range a problems including impinging
      flow, extrapolated inlet conditions with body-forces or for highly
      viscous flows, pressure-induced separation etc.  To test this boundary
      condition at walls in the motorBike tutorial case set
      
          lowerWall
          {
              type            fixedFluxExtrapolatedPressure;
          }
      
          motorBikeGroup
          {
              type            fixedFluxExtrapolatedPressure;
          }
      
      Currently the new extrapolated pressure boundary condition is supported
      for all incompressible and sub-sonic compressible solvers except those
      providing implicit and tensorial porosity support.  The approach will be
      extended to cover these solvers and options in the future.
      
      Note: the extrapolated pressure boundary condition is experimental and
      requires further testing to assess the range of applicability,
      stability, accuracy etc.
      
      Henry G. Weller
      CFD Direct Ltd.
      fc2ce737
  13. Jan 10, 2016
  14. Dec 02, 2015
    • Henry Weller's avatar
      fvOptions: Reorganized and updated to simplify use in sub-models and maintenance · 736621b9
      Henry Weller authored
      fvOptions are transferred to the database on construction using
      fv::options::New which returns a reference.  The same function can be
      use for construction and lookup so that fvOptions are now entirely
      demand-driven.
      
      The abstract base-classes for fvOptions now reside in the finiteVolume
      library simplifying compilation and linkage.  The concrete
      implementations of fvOptions are still in the single monolithic
      fvOptions library but in the future this will be separated into smaller
      libraries based on application area which may be linked at run-time in
      the same manner as functionObjects.
      736621b9
  15. Dec 01, 2015
  16. Nov 28, 2015
  17. Nov 23, 2015
    • Henry Weller's avatar
      fvOptions: New buoyancyForce and buoyancyEnergy · 85c79d83
      Henry Weller authored
      Provides run-time selection of buoyancy sources for compressible solvers
      
      Replaces the built-in buoyancy sources in XiFoam, reactingFoam and
      rhoReactingFoam.
      
      e.g. in constant/fvOptions specify
      
      momentumSource
      {
          type            buoyancyForce;
      
          buoyancyForceCoeffs
          {
              fieldNames      (U);
          }
      }
      
      and optionally specify the buoyancy energy source in the enthalpy
      equation:
      
      energySource
      {
          type            buoyancyEnergy;
      
          buoyancyEnergyCoeffs
          {
              fieldNames      (h);
          }
      }
      
      or internal energy equation
      
      energySource
      {
          type            buoyancyEnergy;
      
          buoyancyEnergyCoeffs
          {
              fieldNames      (e);
          }
      }
      85c79d83
  18. Nov 21, 2015
  19. Nov 18, 2015
  20. Nov 10, 2015
  21. Nov 01, 2015
  22. Aug 20, 2015
  23. Aug 07, 2015
  24. Jul 21, 2015
  25. Jul 19, 2015
  26. Jul 17, 2015
  27. Jul 15, 2015
  28. Jul 01, 2015
  29. Jun 27, 2015
  30. Jun 16, 2015
  31. May 29, 2015
    • Henry's avatar
      MRF: Separate MRF from fvOptions · c3ee2348
      Henry authored
      fvOptions does not have the appropriate structure to support MRF as it
      is based on option selection by user-specified fields whereas MRF MUST
      be applied to all velocity fields in the particular solver.  A
      consequence of the particular design choices in fvOptions made it
      difficult to support MRF for multiphase and it is easier to support
      frame-related and field related options separately.
      
      Currently the MRF functionality provided supports only rotations but
      the structure will be generalized to support other frame motions
      including linear acceleration, SRF rotation and 6DoF which will be
      run-time selectable.
      c3ee2348
  32. Mar 24, 2015